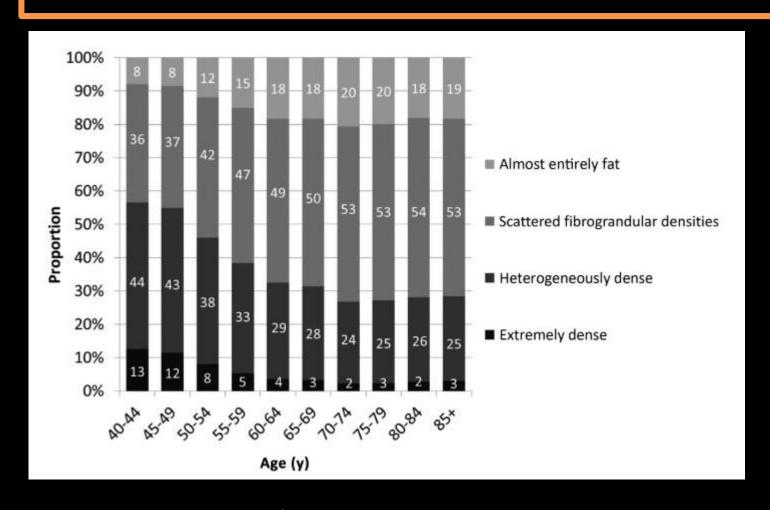

Automated Breast US as Supplemental Screening Modality in Women with Dense Breasts

Dense Breasts

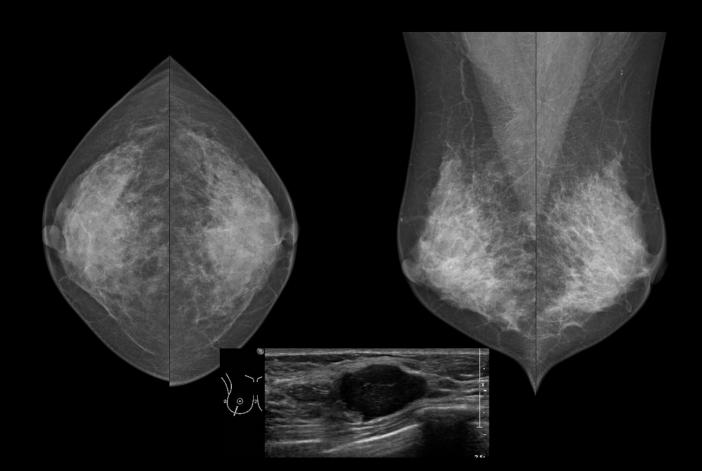
Sung Hun Kim
Department of Radiology,
Seoul St. Mary's Hospital,
The Catholic University of Korea

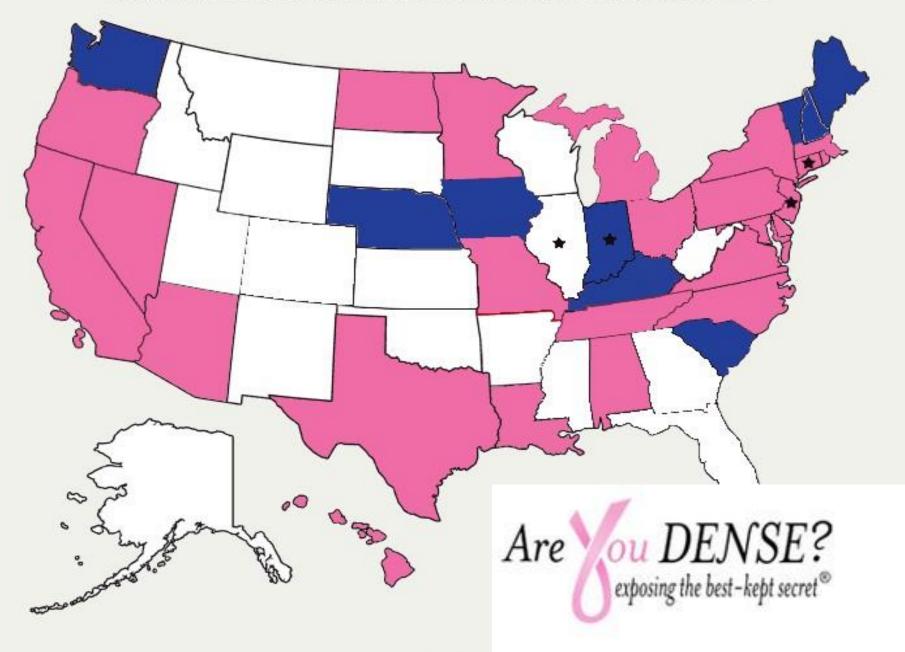

Dense Breast

Dense Breast

Decreased mammographic sensitivity

- Independent risk factor for breast cancer
 - Women with highest density with breasts of 75% or greater percent density have 4–6 times greater risk for developing breast cancer compared to the lowest density with breasts of 10% or less percent density


Prevalence of dense breast


BCSC data – 43.3% of US women 40-74 years

c.The breast is heterogeneously dense, which could obscure detection of small masses.
d. The breast is extremely dense. This may lower the sensitivity of mammography

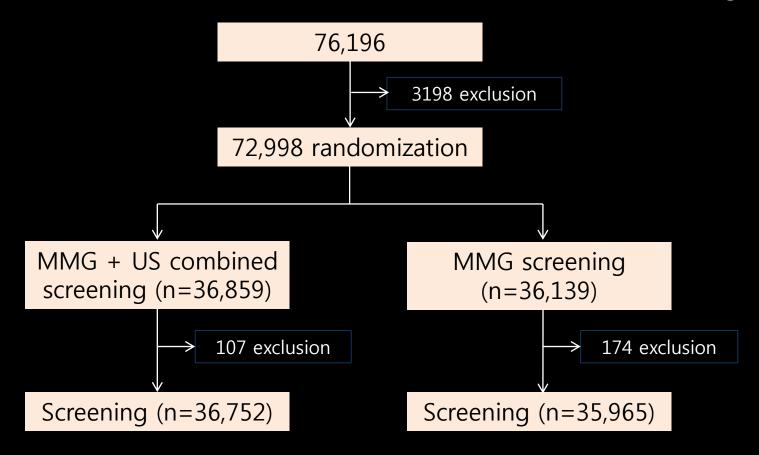
44/F

Click on your state to find information about "mandatory breast density notification" legislative efforts.

PINK: Enacted Law — RED: Introduced Bill — BLUE: Working on Bill — WHITE: No Action — BLACK *: Insurance Coverage Law

ACRIN 6666 (2004-2006)

High risk women (n= 2809)


Table 2. Summary of Performance Characteristics of Screening With Combined Mammography Plus Ultrasound Compared With Mammography Alone at the Participant Level^a

			Comparison of Mar Plus Ultrasou Mammography	ind vs	
	Mammography Plus Ultrasound ^b	Mammography Alone	Difference	P Value ^c	Ultrasound Alone ^d
Yield per 1000 No./total	31/2637	20/2637			20/2636
% (95% CI)	11.8 (8 to 16.6)	7.6 (4.6 to 11.7)	4.2 (1.1 to 7.2)	.003	7.6 (4.6 to 11.7)
Sensitivity No./total	31/40	20/40			20/40
% (95% CI)	77.5 (61.6 to 89.2)	50 (33.8 to 66.2)	27.5 (9.5 to 45.5)	.003	50.0 (33.8 to 66.2)
Specificity No./total	2322/2597	2481/2597			2383/2596
% (95% CI)	89.41 (88.16 to 90.57)	95.53 (94.67 to 96.30)	-6.12 (-7.24 to -5)	<.001	91.80 (90.67 to 92.82)
Area under ROC curve BI-RADS	0.91 (0.84 to 0.96)	0.78 (0.67 to 0.87)	0.13 (0.04 to 0.22)	.003	0.80 (0.70 to 0.88)
% Probability of malignancy	0.90 (0.83 to 0.95)	0.68 (0.53 to 0.80)	0.23 (0.10 to 0.35)	<.001	0.75 (0.62 to 0.85)
Desition recoding to contra			Odds Ratio ^e		
Positive predictive value No./total	31/306	20/136			20/233
% (95% CI)	10.1 (7.0 to 14.1)	14.7 (9.2 to 21.8)	0.65	.03	8.6 (5.3 to 13.0)
Negative predictive value No./total	2322/2331	2481/2501			2383/2403
% (95% CI)	99.61 (99.27 to 99.82)	99.20 (98.77 to 99.51)	2.08	.004	99.17 (98.72 to 99.49)

JAMA 2008 **299(18): 2151-2163**

J-START (2007-2011): 40-49 yrs

RCT on effectiveness of US for breast cancer screening

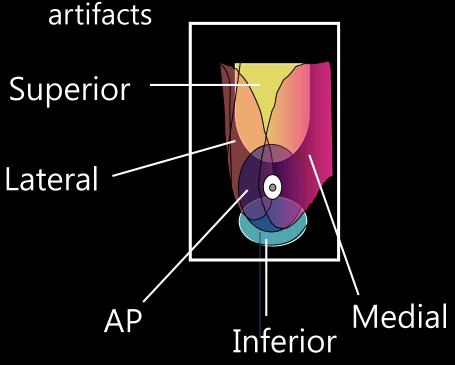
1.84 / 1000 additional detection of breast cancer

J-START

		Combined screening (n=36752)	MMG screening (n=35965)
Sensitivity		91.1% (87.2-95.0)	77.0% (70.3-83.7)
Specificity		87.7% (87.3-88.0)	91.4% (91.1-91.7)
Pathology	DCIS	53/184 (29%)	31/117 (27%)
	Invasive Ca	128 /184 (70%)	86 /117 (74%)
Interval Ca		18	35
Stage	0-I	144/184 (71.3%)	79/117 (52.0%)
	II ~	37/184 (18.3%)	38/117 (25.0%)
Recall Rate		4647 (12.6%)	3153 (8.8%)

Screening ABUS

ABUS in Screening Setting


- the U-Systems' Pivotal Clinical Retrospective Reader Study
 - improved ability of ABUS to detect breast cancer
 - ❖ a clinically insignificant decrease in specificity compared to screening mammography alone
 (76.2% vs 78.1%, P = 0.480)
- U-Systems' somo•v® Automated Breast Ultrasound system for breast cancer screening as an adjunct to mammography for asymptomatic women with dense breast tissue

ACUSON S2000™ Automated Breast Volume Scanner

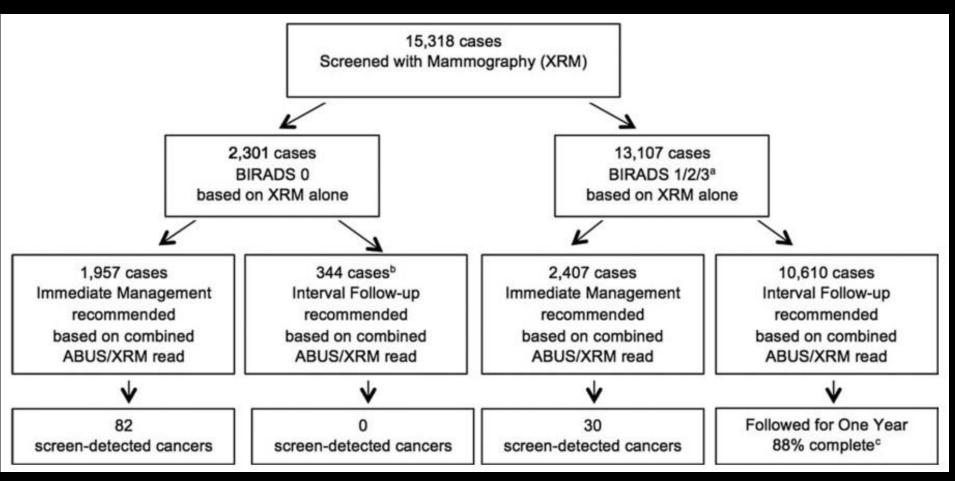
- 3 views AP, medial, lateral
- Including tissue harmonic imaging, spatial compounding and tissue contrast enhancement technology

New processing algorithms for nipple shadow and reverberation

Hand-held US vs. Automated breast US

- HHUS
 - very useful for physically palpable lump
 - disadvantage
 - lack of reproducibility
 - operator dependency
- Automated breast US (ABUS)
 - Proper orientation and documentation of lesions
 - better reproducibility
 - good for follow-up studies
 - Ease of use without a long period of training
 - good for technologists
 - Time-efficient for radiologists
 - reduce interpretation time

HHUS vs ABUS


	HHUS	ABUS
3D view	-	3D reconstruction
FOV	4~6 X 4~6 cm	15X17 cm
Scan direction	Transverse, Longitudinal, Radial, Antiradial	Transverse
Probe	5-17,18 MHz	14 MHz
Elastography, Color Doppler	available	_
Focal Zone	manual setting	wide and fixed
Coupling Agent	Gel	Lotion

The SomoInsight Study

- Cancer detection
 ABUS with MMG vs. MMG alone
- the largest, prospective multicenter study (2009-2011)
- 15318 women
- SN (combined read) -26.7 % increase

```
(95% CI: 18.3%,35.1%)
```

■ Recall rate -284.9 (95% CI: 278.0, 292.2; P < .001)

All women with dense breast underwent ABUS. In group with abnormal MMG, 82 BC were diagnosed with negative MMG, 30 breast cancers were detected with ABUS

The SomoInsight Study

112 breast cancer
 82 (using SM) - 17 (SM only), 62(SM,ABUS)

ABUS and MMG
 additional 1.9 detected cancers /1000

(95% CI : 1.2, 2.7; P < .001)

30 (ABUS only)

Invasive cancer percentage (P < .001)</p>

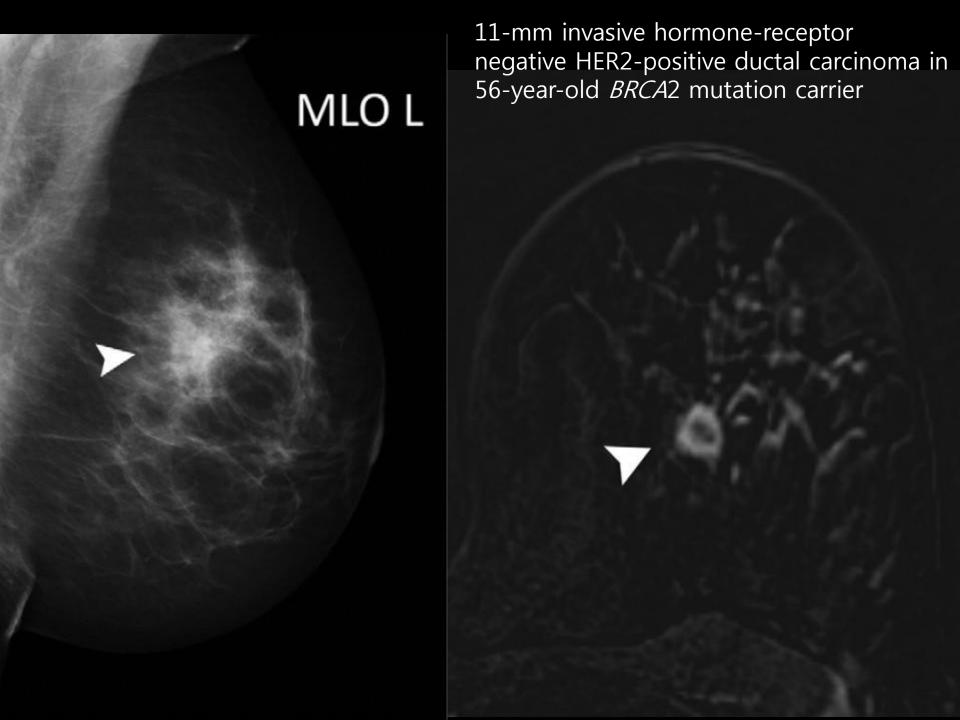
62.2 %(51/82, screening MMG) vs. 93.3%(28/30, +ABUS)

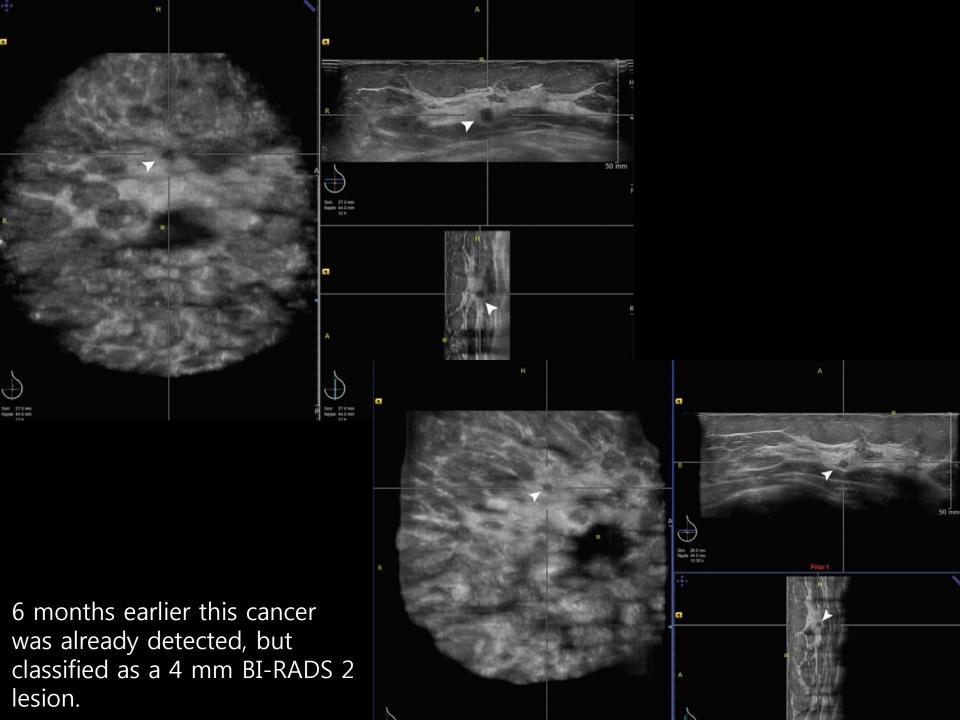
ABUS vs HHUS Screening

	ABUS, SomoInsight	HHUS, ACRIN 6666
Study population	Intermediate risk 15318 participants	High risk 2725 participants
Period	2009-2011	2004-2006
Additional cancer detection	1.9 cancers / 1000	5.3 cancers / 1000

Berg et al. 2008 JAMA

- Screening US
 - solution to detect MMG occult cancers in women with dense breast
- detect small, clinically significant, invasive, and predominantly node-negative cancers.


Multimodal surveillance: ABUS vs. MRI screening


- Prospective multicenter trial (2010-2012)
- Annual FFDM, DCE MRI, biannual ABUS
- 296 carriers of BRCA mutations
- Screen detected cancer -16
 interval cancer -3 (by self exam)

Results

	SN(%)	SP(%)	PPV1(%)	PPV3(%)	NPV(%)	CDR(%)
MRI						
BRCA1	50.2	93.8	16.3	23.5	98.9	1.3
BRCA2	84.5	96.3	37.7	48.3	99.7	2.6
FFDM						
BRCA1	50.2	97.6	31.5	44.0	99.2	1.4
BRCA2	24.8	98.6	27.6	41.4	98.0	0.9
ABUS						
BRCA1	39.4	95.0	10.5	22.6	99.7	1.0
BRCA2	24.8	95.2	7.7	20.4	98.5	0.9

ABUS, FFDM yielded no additional cancers

HARMS/BALANCE

Supplemental US Screening

Supplemental US screening after a negative MMG for women aged 50 to 74 years with dense breasts

Results

- averted 0.36 additional breast cancer deaths (0.14-0.75) per 1000
- gained 1.7 QALYs (0.9 -4.7) per 1000
- resulted in 354 biopsy recommendations after a false-positive ultrasonography result (345 to 421) per 1000 women with dense breasts compared with biennial MMG screening
- The cost-effectiveness ratio was \$325 000 per QALY gained (\$112 000 \$766 000).

Conclusion

 Supplemental ultrasonography screening for women with dense breasts would substantially increase costs while producing relatively small benefits

> QALY: quality adjusted life years BL Spraque, et al. Annals of Internal Medicine 2015

Contradictation by Radiologist

- Lenient definition of sensitivity for MMG (too high SN)
 - MMG sensitivity less than 40 % in the supplemental MR study
- Too high false positive results of US (6%)
 - FP results of any screening methods decrease with subsequent rounds
 - ❖ 4.5% in year 2 and 3 (ACRIN study)
- Modeling
 - substantially underestimates the benefit and overestimates the harms and costs

Adjunct Screening with Tomosynthesis or US

- prospective multicenter study (ASTOUND trial)
 - ❖ 3231 women with MMG negative dense breasts
 - ❖ 13 tomosynthesis detected breast cancers
 - 23 US detected cancers
 - ❖FP recall (testing) 3.33 % from adjunct screening and not differ between two
- Ultrasound has better incremental BC detection than tomosynthesis in mammography-negative dense breasts at a similar FP-recall rate.

The Connecticut Experiment

Additional screening US in women with dense breast

Year	MMG	US	C1, 2	C 3	C4,5	Cancer, high risk lesion per 1000	PPV (cancer only)(%)
1	30679	2706	2377	174	151	4.0	7.3
2	32500	3351	3000	168	180	3.3	6.1 (5.0)
3	32230	4128	3819	168	148	3.1	8.8 (7.4)
4	27937	3331	2889	358	53	3.3	20.1 (18.9)

- PPV for the first 3 years was under 10%, quite low. However, by year 4, PPV increased statistically significantly to 20%
- Learning curve to decide which lesions really needed biopsy and which could safely be followed
- Potentially powerful role for breast US screening

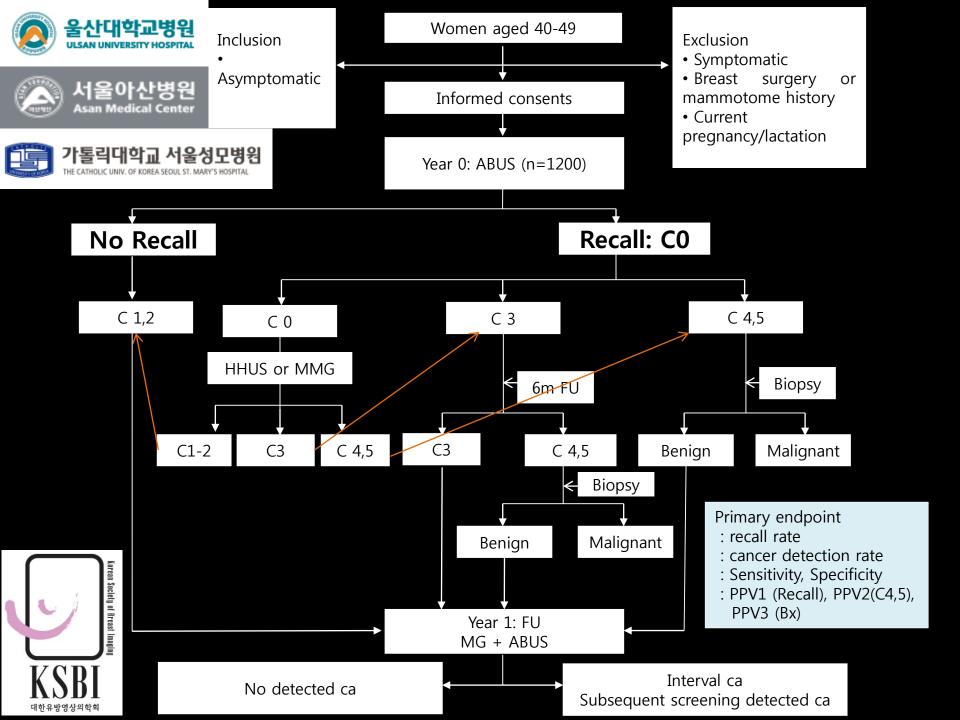
Screening US Guideline

- Dense Breast:
 - Adjunctive screening
 - No RCTs showing a survival benefit of screening women with dense breasts with US as an adjunct to mammography.
 - Limited data
 - > ACR
 - ultrasound can be considered in addition to mammography
 - ➤ USPSTF, ACS
 - insufficient evidence

Asian Studies

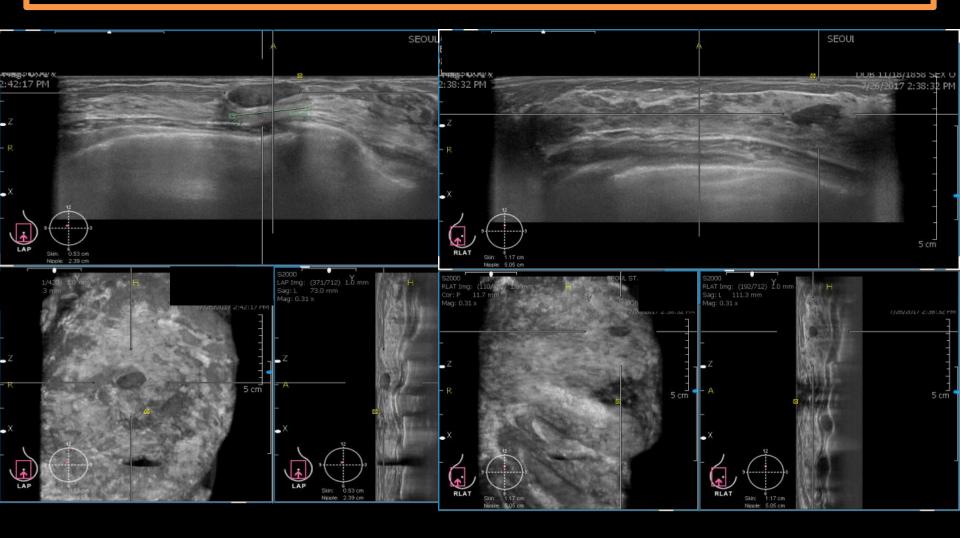
- Additional cancer detection between 3 and 4.6 per 1000 women
- Asian Population

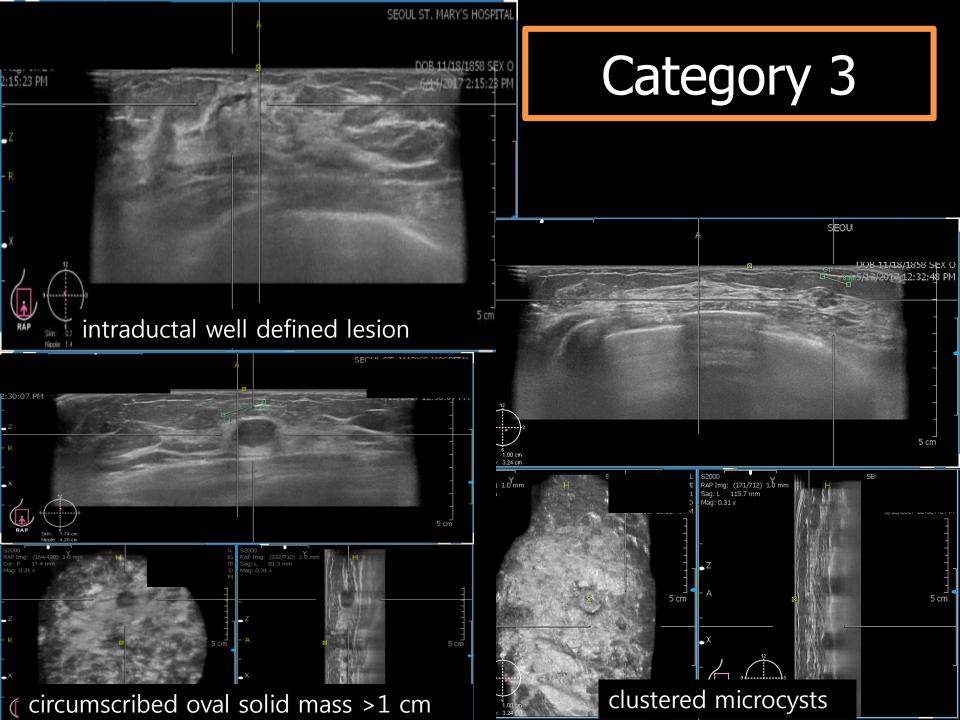
Study	Population Geography	Number of Patients Enrolled	Sensitivity (Ultrasound) (%)	Sensitivity (Mammography) (%)	P Value for Sensitivity	Additional Cancer Detection per 1000 Examinations
Shen et al.	China	13,339	100	57.10	0.04	1.3
Leong et al.	Singapore	141	100	N/A	N/A	14
Chae et al.	Korea	20,864	100	54.50	0.002	2.5
N/A, not avai	lable.					

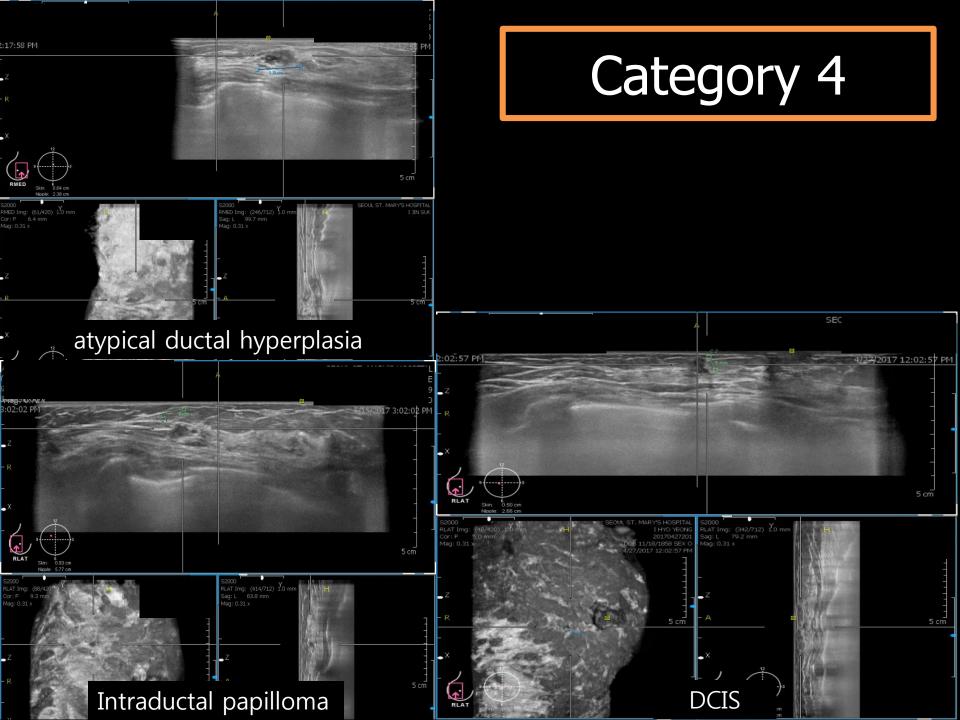

- performance of US in comparison with MMG
- significantly greater SN / no difference in SP
- cost (China) \$7879 for US vs \$45,253 for MMG vs. \$21,599 for both
- a greater portion of invasive, node-negative cancers—cancer detected at an earlier stage with potential for early intervention and improved breast cancer-associated mortality outcome

Balance

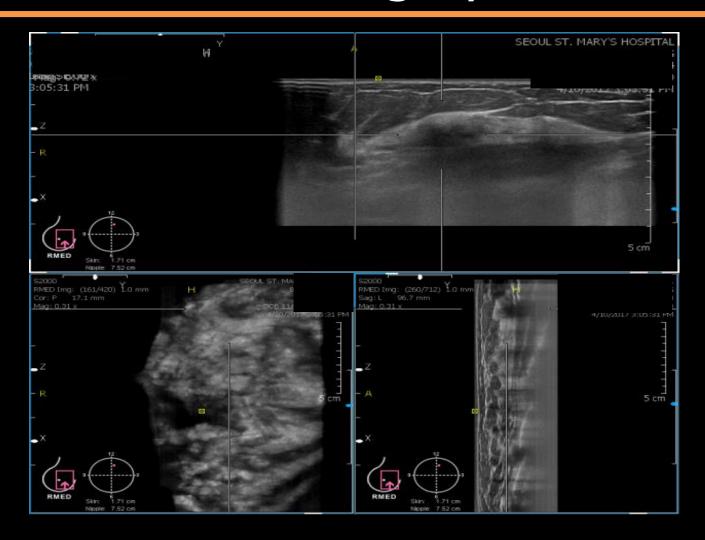
- Population
 - MMG dense breast
 - 40-59 years old
- Learning period for technologists and radiologists
 - to obtain desirable PPV
- Reducing BI-RADS categories 3 and 4 cases
 - by applying supplemental techniques, such as elastography and/or Doppler US
 - by applying strict criteria
 - new criteria of category 3, 4 for screening


Korean ABUS Screening Trial


ABUS criteria in screening setting


Category	Finding	Size
2	Simple cyst/IMN/Calcified FA/fat-containing lesion	
	Multiple, oval, circumscribed complicated cysts or masses	
	Round, circumscribed, solid mass	< 5mm
	Oval circumscribed, parallel solid mass	<10mm
3	Isolated complicated cyst	
	Round circumscribed solid mass	>5mm
	Oval circumscribed parallel mass	>10mm
	Clustered microcysts	
	Intraductal well defined lesion	
4	Others	
5	Irregular, spiculated mass	

Category 2



Multiple bilateral circumscribed oval hypoechoic masses

Category 5

KABUS interim results

■ 2017.3.1 ~ : 846 cases

Recall rate (%)	SN (%)	SP (%)	PPV 3 (%)	CDR (per 1000)
7.32 (62/846)	100 (5/5)	83.2 (784/841)	27.7 (5/18)	5.91
C0 (n=3) C3 (n=41) C4,5 (n=18)			IDC (n=4) DCIS (n=1)	

False positive rate – 1.5 % (13/846), Biopsy PPV 1 - 8.06 % (5/62) PPV2,PPV3,- 27.7 % (5/18) IDC stage – Stage I (n=2) Stage II(n=1,T3N0) Stage III (n=1, T1N3)

Take Home Message

Benefits

Availability

Early (invasive) cancer detection

No radiation hazard

Harms

High false positive

Increased recall

Asian women

High incidence in their forties

High rate of dense breasts

Uncertain

Mortality reduction

Cost-effectiveness

